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. Introduction N

elI t was clearly stated by Hertz (1881) that his solution for the

eatcfield due to pressure between spheres should be applied only to

contact regions of radius small comipared with that of the spheres. His

formulae have, for many years, been applied to the indenting of a flat B

elastic specimen by a hard sphere, and found accurate and reliable in the

range a/R < 0.1, where a, R are the radii of contact and of the sphere

0 eseThe theor has also been used beyond thisrvale, and the Hertz

formulae now form the basis of an ever-widening rag fmethods for

S testing and determining the properties of materials. Because of this, it

is of interest to calculate another term in the elastic solution, extending

its range to larger a/R, in order to make clear the conditions under which .

this second term may safely be ignored.

In this paper we imagine a rigid sphere pressed on an elastic

half-space, and calculate the displaced form of the initially flat surface

using Hertz' equations. It is shown that there is some misf it between the

0 deformed surface and the sphere, and a second elastic field is developed as

a correction. The theory of this second stress field is described in 4

detail in S3, and some relevant conments of a more general nature are made

in 54. The latter section may, however, be omitted by the reader who wishes

to proceed to the applications in 55. Finally the method of correction is

demonstrated in the practical case of determining the elastic modulus E of

a pliant material.

The displacements, stresses dnd strain. are those of first order

linear elasticity theory throughout.
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2. Errors in Hertz' solution for large a

For a rigid spherical indenter pressed with load F on the flat

surface of an elastic half-space, the components of displacement u and wP

as given by the Hertz theory are:

-(I - 2v)F ( (2/2) 3/2)

477 Gp

3(1 - V)F 2 2
w = (2 -/a

16 Ga

within the contact area o < a. Here v and G are Poisson's ratio and the

V shear modulus respectively, and the cylindrical axes Pr Z are as
V'T
- indicated in fig.l.

Near the Z axis, these displacements give very close fit of the

deformed surface to a sphere of radius RH, where

1/R = 3( - v)F/8G a 3  (2)H

since the w displacement defines a parabola with this value of maximum

curvature. But as p increases the parabola diverges from the sphere, and

the w displacement therefore introduces a growing gap, while the u

component tends to close it. For large values of Poisson's ratiov, the

component w has the greater effect, since u. -) 0 as v - 0.5. So for large

v the Hertz solution creates a gap between sphere and surface in the outer

part of the contact region, despite the transmission of pressure there.

In other words, coqtact is lost over part of the "contact area".

For small values of v the component u is dominant, bringing the

indented surface actually within the voltune of the sphere. For intermediate

values of v there is an approximate balance between the two, gap or

overlap depen(ing on the extent of contact a/R.

In fig.2 are curves indicating the gaps and overlaps implicit in the
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calculated at p 0 .9a in each case, since this is near the position of

maximum u .The error for small v Is always an overlap, whict. increases

with decreasing v and with increasing a./R.

These errors, although small, show a logical inconsistency in

applying the Hertz theory outside the range a,'R .2, since the prescribed

pressure cannot readily be transmitted across a gap, nor can sphere and

specimen occupy the same point in space. The value of the contact radius#

a, for a given load and sphere radius, becomes doubtful also, but it is

not immediately apparent whether larger or smaller values wou~ld reduce the

V errors in fig.2. Since the values of a are commonly used in estimates of

S strength and toughness derived from the indentation of hard, brittle

materials, the question of their accuracy becomes important.

To investigate this, better fitting contact may be made by combining

the Hertz field with another exact elastic one (the parabolic pressu~re

field) in proportions I + d*: d, where d is a small parameter, so that

each of the two separate solutions, and the combined one, applies the same

load F to the same contact area p < a. This mearns that a is fixed, while

the parameter d is varied and adjusted so as to make the displaced surface

as nearly spherical as possible over the whole contact area. The value of

d is found in this way for each value of F, and thence a modified form of

equation (2).

But first the new elastic field must be described.

3. The parabolic distribution of pressure

A force F applied normally to the contact area may be distributedI as pressure p given by: 5

p = 2F(a 2- p 2)/1?a 4for p < a

M 0 for pa> a
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which resembles a paraboloid of revolution, with value 2F/,Ta on the z

axis, zero at the contact edge. This case was mentioned by Boussinesq

(1885 p149) who calculated the norma! -isolacement w of the compressed

surface as

W + -2 a 2t 0-
T . (+ ) 3a

(4)
*+ \i2p 8

9a a =

where his (+ . 24)/u( A + )= 2(I - %v)/G. Further details of this

field do not appear to have been published, but may readily be found by

* i. using Boussinesq' harmonic functions as described by Love (1929).

-. , . If a function X is defined by the equation

X(0,z) = log (z + r) dS (5)

where dS is an element of the contact area 0 < P < a, r its distance

from the field point (p, , z), and if

V(P'z) = wa

f p r dS (6)

then ( and V are harmonic functions from which we may calculate the

stresses and displacements, throughout the region z > 0, caused by the

given applied pressure p. The stresses are given by:

V 2v2iro =2vI - 2v)-- iL V
P z a 2 2

a3V (1 - 2v) DX z V
S2 =2,v 3z0 V (7)

2V z 2 Vz.'-z, z 2

', f 2r-r z -
Oz ) zPaz

The other shear stresses are zero. For the displacements u and w we

have



47rG u = -(1- 2v) V

p Ipa(8)
:. av

4irG w = 2(1- vV - z ;z

and from these equations the whole field may in principle be determined, by

substituting a particular form such as (3) for the pressure p in (5).

But it is not always easy to calculate X and V from (5) and (6) as

explicit functions of p and z, although V has been determined for the
3v

Hertz pressure distribution, and 1z found for the case of a uniform

pressure (Love, 1929). The function V is also known for pressures due to

smooth rigid indenters of flat or conical form (Love 1939, Green 1947) but

attempts to solve the present case of parabolic pressure (3) have not yet

been successful. i

UHowever, much can be done with the surface and axial values of the

functions, which are readily determined. We have, on p = 0,

Ja p (P.) %
V(O,Z) = 0 2 + pj dpI

(z + P, 2 z

4F= - 2(z2 + 23/2 - 3az
3a

3 -_2 22 2IF L 2zz +a') -2z a

-2

P aP (91)

92X"

- -2

2i-2 a-

-2
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since V and X(have axial symmetry an] satisfy Laplace's equation. For

the function ( we may integrate V with respect to z:

((o, z) =Kdz (10)~J

FF 2 Y3/2 2 2 ,2 4

3a- L 2z (a + z2) + 3a z(a
2  z2)

+ 3a 4 log (z + (a2 + z62 6 2 2 .1
log+ )) - 6az + constj

. Equations (7) to (10) determine the stress components and w on the z axis.

To find their values at other points we observe that V as given by

(9), but regarded as a function of a complex variable z, is an analytic

.function of z in a domain which includes the origin. It is therefore

possible to express V as an integral of the same function of

(z + ip cos 0) (see Wlittaker and Watson, 1946, p3 9 9). For, if

, V(0,z) = g(z) in (9)

*, theni V~p~z) : I

V(PZ) = - g(z + ip cos e) d& (11)

in a region surrounding the origin. Similar relations may. be written

3V 3,-V
down for d- and since they also are harmonic, but this does not

apply to the derivatives with respect to p.

Although these integrals may be cumbersome for an arbitrary point

(p,z), they can readily be evaluated on the surface, where z = 0 and p < a:

4F 2 2 2 3/2V(p,O) = - 2 cos)
'. '- J 0 3a 4

+ 2ip3 cos3 - 3ia 2 P cos) de

16F2
3 nra 0 2

(in agreement with Boussinesq p.150)

16F = 2(2 - k 2 )E - (I - k2)K] (12)
97-a
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where E, K are complete elliptic int grals of modulus k = 10/a. Similarly

W aV (p,o) _ 4F 2 2a'-"z"(p - a")

a

F2  2 2
x(P'o) - F (4a - p ) + const.
ap 4

4a

E- (2a 2 - 2 (13)

These equations, with (7) and (8), give the displacements and

stresses on the contact area. At points (/0,o) on the free surface outside
%I,

the contact region the stress components and u take their usual values

-* corresponding to the load F (see Way, 1940), and w is found from

**Boussinesq' integral (1885 p.150).

The results for the parabolic pressure distribution are simmarised

below.

.. (i) On the z axis, where p = o:

0 U

Sw = 4 4(1- V)(a 2 + z 2 ) 3 / 2  6z 2 (a 2 + z2 )

3wGa 4

- 3 - 2v)az + 2( + 2v)zJv

Sa 2 (3 + 2v) z(a+ (3 + 2v)Z

ks. - (1 + 2v)a 2 /2 - a 2 z(a 2 + z 2) 14

2F I  2 22 ) 2-2 2
a

Sk -a -2zla 2  2 2 2+2)•z-". 4 L
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(ii) For z = o, o < a:

u = -(I - 2\) F 0 (2a - )i47Ga

2 - -2i 2= (I - ,)) F 2(2 k2 ) E (1 - k2K /972Ga

E,K being elliptic integrals of modulus k o/a.

0 = F 3 + 2v) 2 - 2(1 + 2'V)a /2Ta 4) ,.n t (14ii

2 4 -i
0 =F (I + 6V) ( -2C / + 2) )a /2Tia

o = -2F (a- :2)/4

F2 iv
a-Y F

(iii) For o > a, z = o, - = - :

u = -(I - 2v)F/47Go (14..) 4
2

0 = ( - 2v)F/ 20ro = -

4 Z

as for any symmetric distribution of the load F (Way 1940) but w is here:

( 2 2 2 1 E/2 2
w 8(1 - V)F" - 3k (1 - k )K + 2(2k- 1) 92Ga k

L

where the elliptic integrals now have modulus k = a/.

From equation (14ii) the curvature of the displaced surface at the

axis is

/Rp = 2(1 - v)F/7Ga
3

and the vertical displacement there is

w = 4(1 - v) F/3nGa (15)

so that this field gives a slightly deeper and more pointed indent than
4i

the Hertz formulae. The maximum pressure, at the centre of the contact

area, is

- = 2F/7T a2  (16)
I.

n

or twice the mean pressure. a:

This completes our description of the parabolic pressure field,

which is used as a correction to the Hertz solution in §5. But first,
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since other contact problems may requiire similar corrections, we briefly

describe in §4 a few simple pressure- fields and some useful relations

between them. This section may, however, be omitted by the reader who

wishes to proceed to §5. V

%

4. Some simple pressure fields

In linear elasticity theory many p-oblems are solved by combining

separate known stress fields in suitable proportions. This present paper

makes use of the Hertz solution and the parabolic pressure field, but there

are three other well-known axially-symmetric cases, namely the flat punch

(Boussinesq 1885 p.158), the conical punch (Love 1939) and the case of

uniform pressure (Boussinesq p. 1 4O, Love 1929). To these we may add the

linear or conical pressure field. Some interesting properties of these

fields and some relations between them are worth mentioning here.

Arranged in two groups of three, the six cases are displayed in

Table I, with diagrams of the pressure distribution and the shape of each

3' indentation, and with the corresponding formulae alongside, Since these

fields may be combined linearly it is often possible to build the shape of

a required pressure distribution or given indentation from these known fields.

The process is simple if the contact area is the same in each case.

Alternatively, a given pressure distribution may be represented

approximately by applying uniform pressure (B1 in Table I) to smaller

contact areas of radii a/n, 2a/n ... (n-1)a/n, a, so making a stepwise

approach to the required curve, becoming closer as n increases. Both B2

and B3 (in Table 1) may be regarded as integrals of BI in this way, but it

is not so easy to build a required indentation shape, such as a parabola,

A2, or cone, A3, by superposing solutions A, for varying contact, because

the non-zero displacements w outside the contact must be included in the "U
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calculation.

Now having seen the parabolic pressure as an integral of simple

uniform ones with respect to a, we may reverse this process and regard the

whole stress field B1 as a derivative of B2 or B3, and the flat punch A1 as

a derivative of Hertz, as follows.

As described by Love (1929) the elastic stress field of a particular

pressure distribution may be derived from a single harmonic function X, by

using eqns. (5) to (8) in §3. For the Hertz case,

*3F Aa ' 2 7 2 2
XH(;,z) = 23ffa (a - p1 ) log (z + r) P1 dp I

where r is the distance between the field point (p, o, z) and a point

101, o, o) in the contact area. If we write this:

aXE 3F. jIa 2 _P 2 log (z + r)p do dp

3
then a is a continuous function of a for any ixed point (p,z). We may

therefore differentiate this function with respect to a, hnd so obtain another

harmonic function of 0,z;

(Fa 3 2 log(z + r)

(since the pressure is zero at p= a). But for a load F applied with a

rigid flat circulaf punch (case A1 ) the fundamental harmonic function is XF,

where
F (a 2% log (z + r)

XF 2w j 0 (a 2 _ P 2 Pi do dp 1
2wra o3 o (a

- a(a XH) / 3a2 (17)



This is the simple relation b>z :ween the two elastic fields, and by

interchanging the order of differentiation it is possible to regard a

component of the flat punch field as a simple derivative of the corresponding

Hertz component.

For example, the displacement u in the contact area, for the flat

punch is given by:

1 a 3
u (punch) = (a u (Hertz))

3a2  &a p

1 a 2v)F (a 3 - (a2 -

3a 4wrGp

-(1 - 2v)F (a (a2 2
* 4iGpa

Similarly the function V, that is , for the flat punch is
3z

V = - tan-' (A)
F a z

on the z axis, where the Hertz function is

3F ( (a2 + z2 ) tan- ' (a/2) - az)
VH 2a -

12a

So again VF = 3 a (a3 VH)F 3a 2  D

These two related fields have simple algebraic expressions defining

both the vertical displacement and applied pressure in the contact area,

and were described by Boussinesq as the two simplest cases (1885 footnote

I, % p 206). He did not mention the case of the conical punch (Love (1939)

Harding and Sneddon (1945) Green (1949)) which has a simple linear

M" displacement
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(1 - v)F ,a
- wGa 2

in the contact circle, perhaps because of an infinity in the pressure,

p F 2 (log (a + (a - - log P)
ma

This conical punch field (A3 on Table I) is also related to the flat punch

solution by a simple differentiation

x _ 1 a (2 (
F 2a a c

where Xc is the fundamental function for the conical punch. Equations

similar to (18) relate corresponding components of the two fields.

The three solutions A, A2 and A3 of Table I therefore form one group,

and the relations (17) and (18) between them can be used to reduce tedious

calculations, or to check a derived formula.

The other three solutions B1 , B2 and B3 are related in a similar way.

For if Xp is the fundamental function for the parabolic pressure problem

(B2 ), then

*4 =Xu 3 aa (a Xp)
4a

is the function for Love's case of uniform pressure (B1), and moreover

u a2  a (a XL) (19)

where XL relates to the linear (or conical) pressure distribution (B3).

The related stress fields B,, B2 and B3 of this second family do not

have as simple expressions for the displacement as the A group. Instead,

w is expressed in terms of complete elliptic integrals of modulus (p/a),

and the calculation of stresses is more difficult than in the cases A.

However, the axial values are quite tractable, as was shaim in 3 4 mey
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be found from V(0,z) using equations (7). For an arbitrary point (p,z)

the fields of B2 and B require furt)er simplification of the integrals.

The relations (17), (18) and (19) between these different fields of

elastic contact can be useful in practical calculations both as a check

and as a wider view. The parabolic pressure field which we are using here

can now be seen not as a strange new field but in its rightful place,

being related to the uniform pressure problem _ as Hertz is related to

the flat punch.

5. The combined solution

This section may be read as if directly following §3.

A linear combination of the two elastic fields is formed:

( + d) Hertz - d (parabolic) (20)

with d a positive parameter which is to be determined. Each displacement,

strain or stress component of the combined field is of the form (20), with

the same load F and contact radius a for the combined as for the separate

fields.

ass' Then if the combined solution is to give an indent which fits against

a rigid sphere in 0 < p < a, the best value of d must be found for each F,

% Athat is, the d value which makes the displaced surface closest to a sphere.

The criterion chosen for this is quite simple. Taking x, y axes not

from 0 but from the lowest point of the displacedsurface in fig.1, the

coordinates of a surface element originally at (p,0) are:

x - p+ u
P (21)

y - w - w
0~0

where w is the vertical displacement at p - 0. The set of points (xy)
qEZ o

I" *.I
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corresponding to values of p less than a all lie on a sphere of radius R

with centre on the z axis if:

x + (R - y) R

This requires

*2 2(x + y )/2y = constant = R (22)

and this has been used to find d for various values of the load. The

fitting process determines not only d for that load but also the radius R

of the sphere which would give that a at the given load F. For very small

loads d is zero, since the Hertz solution is accurate there. For larger
p1.'

loads d increases almost linearly with the mean contact pressure('f, +)
Values of d have been found in this way at various loads for three

values of Poisson's ratio, v = 0.1. 0.25 and 0.4. The results are shown in ,

Table II, and also the values of the MU, R of the indent, with the Hertz

ratio a/ for comparison. R differs from RH for many of the wider contacts,

but does not vary in a simple predictable way. A numerical correction

factor D(d) is defined by R = RH/D(d), and this also is shown in Table II,

The same results are displayed graphically in fig.3, where the 4
straight dashed line indicates the simple proportionality of mean pressure

to a/RH as in eqn. (2), and curves are drawn for the modified relations

a/R = D(d). 3(1 - v)F/8 Ga 2  (23)
= D (d) 4/R H

showing the effect of the correction factor D(d). This equation may also

be written:
3

a 3 . D(d) 3(1 - v)F R/SG

- D(d) a3  (24)

showing that (d))1/3 is the correction factor for a as calculated froi
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known F and R by the Hertz foxrxula. The curves are drawn up to a/R % 0.8,

* although not many materials are caf ble of perfect elasticity to this

extent.

It may be seen from fig.3 that for v 0.1 the ratio a/R is always

greater than the Hertz value, while for v 0.4 it is less. For v = .25

the difference changes sign at about a/R = 0.5, with a/R less than the

Hertz value in the upper range. The difference in the lower range is not

distinguishable in the figure, but a/R exceeds the Hertz value by about 2%

at a/R % 0.3.

Although D(d) = I at a/R '\ .5, so that a = a H and R = RH, yet there

are corrections to be made neverthele3s. For at this point d (05)4)l-5 tA

value 0.27, which modifies each component of the field according to the

formula (20). For example the maximum pressure under the indenter is now

given by

(I +d) - d -F
27ra 2  7Ta 2

which is less than the Hertz value by 9%, and the depth of the indentation,

from (1) and (1*), is reduced by nearly 4%.

The values of d in Table II and fig.4 show that the stress field of

Hertz is increasingly modified as the contact area widens, requiring

larger proportions of the parabolic field to give a good fit to the sphere.

But while d is increasing, the correcting factor D(d) may vary from unity

in either direction. This means that, for a given series of increasing

loads, a/R becomes greater than predicted by Hertz if v is small, but less

than the Hertz value for large v, and changes over at a/R "' .5 for v - .25.

The corrected values are not perfect because we are combining only

two separate curves to fit a circle. After finding the best value of d,

and the corresponding R, the remaining gap or overlap of sphere and surface
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is given by

2 2Ix2 + (R -) yR]

This remaining misfit is nearly .0003R at a/R = .5, and .001R at

a/R = 0.8. Comparison with fig.2 shows the degree of improvement.

The results presented in Table II and figs. 3,4 may now be used to

estimate errors in practical cases. An example is demonstrated in the

next section.

6. An example

Let us suppose that the elastic modulus E of a pliant material is to

be determined experimentally using a hard spherical indenter.

From the Hertz equations (1) and (2) we have, since G = E/2(1 + V),

w 0= 3(1 - v2)F/4Ea

= a 2/R (25)

and so

El = 3( - )F/4R W3/2 (26)

where w is the displacement of the rigid indenter from a position just

touching the original flat surface of the specimen (see Cousins, Armstrong

and Robinson 1975). A series of accurate measurements of w and the
0

corresponding load F, for a known indenter radius R, gives us values of

E /(1- 2) or E itself if v is known.EH/(l ,o

if the values of EH so determined appear to rise (or fall) with

increasing load, then it is of interest to decide whether this is due to

anelastic behaviour of the material or merely to the inaccuracy of the

Hertz formulae. This question is readily answered usinq fig.3, which

displays the calculated curves (23), and the corresponding values of d *n f(Y.4.
Consider first the curve for v - 0.1. The factor D(d) is unity for
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small contact, increases to 1.05 at a/R .5 where d = .3, then falls

again to 1.01 at a/R " .8, d = .55. For w we have the combined form (20),

w = (1 + d) w (Hertz) - d w (parabolic)

= (0 - 0.1317d) 3(0 - v2)F/4Ea

= (I - 0.1317d) a 2/RD(d)

Substituting a = [D(d) R w0/(0 - 0.1317d)]

gives an equation for E in the corrected form:

E = (I - 0.1317d)3/ 2 3(0 - v2 )F/(4R' w0
3/ 2 D(d)')

(1 - 0.1317d)3 2 EH /D(d(28)

From this it appears that, for v = 0.1, the "measured" values of EH,

obtained by using eqn (26), would exceed the true values E as the load

increased, the error being 9% for a/R It, .5 and 12% for a/R N .8.

Repeating these calculations for v = .25 we find similar behaviour but

a smaller effect, errors now 6% and 8%. Finally for v = .4 the error

reaches only 1.4% at a/R 1 .5 then decreases to 1% at a/R I .8. The Hertz

formula therefore seems reliable for E determination when*V is large, and

0% this is fortunate, since such v occur in some very pliant glassy polymers

for which an elastic indentation may well reach high values of a/R. The r

. 5error remains small because the corrections in numerator and denominator of

eqn (28) are of similar magnitude in this case.
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7. Conclusion

The classic formulae of Hertz, applied to the indentation of an

elastic half-space by a rigid sphere, have been modified to give greater

accuracy for contact areas beyond the usual range. For this purpose a

large part of the elastic field of a parabolic pressure distribution has

been described in detail, and also discussed more generally in relation to

other contact problems.

The parabolic field has been subtracted in small proportions from the

* Hertz field, making use of the linearity of the system. The ratios

* required to give accurate fit to the sphere at wide contacts have been

calculated for three different values of Poisson's ratio, and displayed

graphically for practical application. Comparing the modified solution

with that of Hertz, the changes in the radius of contact are in general

V small, with maximum 4%, but larger corrections were found for the maximum

pressure and for the indentation depth.

As modern pliant materials extend the elastic range of indentation,

and modern methods increase the accuracy of measurement, these results may

* be useful for comparison or reassurance. The theory is first order linear

elasticity throughout.
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Table I.

i.,- 2a -- Contact pressure and displacement.

Flat punch;
P= F/ 2Tra(a2 p2) 13

1 
LLLEI

/w w =(I-V) F/ 4 Ga"

2- Z21 /  "
2 16 G0 3.

F(g-lo 
) a Tic]

Op W= 3 -l)vF(Ta-2P)/2Ga"

- Uniform:

w. = 21(1 -VlF. El(k)/a,2Ga.

~Parabolic:

B2 ,. _,,,,,,;,_ 'p = 2 F(a2_ p 2)/-ma4. '
B2 10 

2 2K1/

10w (I -V)F( 2(2-k2E)-k ' K)g2Ga.

_ 
1 i /~ --

aLinear:
p= 3F(a-p) 

3

iB3 2-22fEsk/2.
B w =6(1-v)Fp1 ;d1
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Table II

-. (1v-)F/Ga 2  d a/R a/R D(d)

.45 .097 .173 .169 1.03

.675 .15 .26 .253 1.03

v = .1 .9 .21 .352 .337 1.04
1.35 .32 .526 .506 1.04

1.8 .44 .691 .675 1.02

2.25 .58 .84 .84 1

.187 .03 .07 .07 1

O .375 .061 .143 .14 1.02

.562 .098 .215 .211 1.02

.75 .14 .286 .281 1.02

. = .25 .94 .18 .357 .352 1.02

1.125 .22 .427 .422 1.015

1.31 .27 .493 .491 1

1.35 .29 .504 .506 1

1.5 .32 .558 .562 .99

1.875 .42 .68 .703 .97

2.25 .52 .79 .84 .94

.375 .04 .141 .14 1

.6 .068 .225 .225 1

.75 .092 .279 .281 .99

1.2 .18 .43 .45 .96

v - .4 1.5 .24 .53 .56 .94

2.25 .4 .73 .84 .86



Fig. 1 Diagram of indented surface showing axes and extent of contact.

Fig.2 The errors in the Hertz theory as a/R increases. Positive

values of R - R indicate overlap, negative ones a gap.

Fig.3 Mean pressure vs modified extent of contact a/R.

Fig.4 Variation of d with mean pressure for various v.
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Fig. 1. Diagram of indented surface showing axes

and extent of contact
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